Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311656, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308144

RESUMO

Flexible actuators with excellent adaptability and interaction safety have a wide range of application prospects in many fields. However, current flexible actuators have problems such as fragility and poor actuating ability. Here, inspired by the features of nacre structure, a gradient structured flexible actuator is proposed with mechanical robustness and self-healing ability. By introducing dynamic boronic ester bonds at the interface between MXene nanosheets and epoxy natural rubber matrix, the resulting nanocomposites with ordered micro-nano structures exhibit excellent tensile strength (25.03 MPa) and satisfactory repair efficiency (81.2%). In addition, the gradient distribution structure of MXene nanosheets endows the actuator with stable photothermal conversion capability, which can quickly respond to near-infrared light stimulation. The interlayer dynamic covalent bond crosslinking enables good response speed after multiple bending and is capable of functional self-healing after damage. This work introduces gradient structure and dynamic covalent bonding into flexible actuators, which provides a reference for the fabrication of self-healing soft robots, wearable, and other healable functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...